Uncovering high-strain rate protection mechanism in nacre

نویسندگان

  • Zaiwang Huang
  • Haoze Li
  • Zhiliang Pan
  • Qiuming Wei
  • Yuh J. Chao
  • Xiaodong Li
چکیده

Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain rate hardening: a hidden but critical mechanism for biological composites?

Natural materials such as nacre, bone, collagen and spider silk boast unusual combinations of stiffness, strength and toughness. Behind this performance is a staggered microstructure, which consists of stiff and elongated inclusions embedded in a softer and more deformable matrix. The micromechanics of deformation and failure associated with this microstructure are now well understood at the "u...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre.

Highly mineralized biological materials such as nacre (mother of pearl), tooth enamel or conch shell boast unique and attractive combinations of stiffness, strength and toughness. The structures of these biological materials and their associated mechanisms are now inspiring new types of advanced structural materials. However, despite significant efforts, no bottom up fabrication method could so...

متن کامل

A novel biomimetic material duplicating the structure and mechanics of natural nacre

Nacre from mollusk shell is a high-performance natural composite composed of microscopic mineral tablets bonded by a tough biopolymer. Under tensile stress, the tablets slide on one another in a highly controlled fashion, which makes nacre 3000 times tougher than the mineral it is made of. Significant efforts have led to nacre-like materials, but none can yet match this amount of toughness ampl...

متن کامل

Nacre from mollusk shells: a model for high-performance structural materials.

Nacre is the iridescent layer found inside a large number of mollusk shells. This natural composite has a very high mineral content, which makes it hard and stiff. However it is the toughness of nacre which is the most impressive: it is three orders of magnitude tougher than the mineral it is made of. No manmade composite material can boast such amplification in toughness, and for this reason n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011